Genome-Wide Analysis of the Aquaporin Gene Family in Chickpea (Cicer arietinum L.)

نویسندگان

  • Amit A. Deokar
  • Bunyamin Tar'an
چکیده

Aquaporins (AQPs) are essential membrane proteins that play critical role in the transport of water and many other solutes across cell membranes. In this study, a comprehensive genome-wide analysis identified 40 AQP genes in chickpea (Cicer arietinum L.). A complete overview of the chickpea AQP (CaAQP) gene family is presented, including their chromosomal locations, gene structure, phylogeny, gene duplication, conserved functional motifs, gene expression, and conserved promoter motifs. To understand AQP's evolution, a comparative analysis of chickpea AQPs with AQP orthologs from soybean, Medicago, common bean, and Arabidopsis was performed. The chickpea AQP genes were found on all of the chickpea chromosomes, except chromosome 7, with a maximum of six genes on chromosome 6, and a minimum of one gene on chromosome 5. Gene duplication analysis indicated that the expansion of chickpea AQP gene family might have been due to segmental and tandem duplications. CaAQPs were grouped into four subfamilies including 15 NOD26-like intrinsic proteins (NIPs), 13 tonoplast intrinsic proteins (TIPs), eight plasma membrane intrinsic proteins (PIPs), and four small basic intrinsic proteins (SIPs) based on sequence similarities and phylogenetic position. Gene structure analysis revealed a highly conserved exon-intron pattern within CaAQP subfamilies supporting the CaAQP family classification. Functional prediction based on conserved Ar/R selectivity filters, Froger's residues, and specificity-determining positions suggested wide differences in substrate specificity among the subfamilies of CaAQPs. Expression analysis of the AQP genes indicated that some of the genes are tissue-specific, whereas few other AQP genes showed differential expression in response to biotic and abiotic stresses. Promoter profiling of CaAQP genes for conserved cis-acting regulatory elements revealed enrichment of cis-elements involved in circadian control, light response, defense and stress responsiveness reflecting their varying pattern of gene expression and potential involvement in biotic and abiotic stress responses. The current study presents the first detailed genome-wide analysis of the AQP gene family in chickpea and provides valuable information for further functional analysis to infer the role of AQP in the adaptation of chickpea in diverse environmental conditions.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Genome-Wide Identification and Tissue-Specific Expression Analysis of UDP-Glycosyltransferases Genes Confirm Their Abundance in Cicer arietinum (Chickpea) Genome

UDP-glycosyltransferases (EC 2.4.1.x; UGTs) are enzymes coded by an important gene family of higher plants. They are involved in the modification of secondary metabolites, phytohormones, and xenobiotics by transfer of sugar moieties from an activated nucleotide molecule to a wide range of acceptors. This modification regulates various functions like detoxification of xenobiotics, hormone homeos...

متن کامل

Genome-wide analysis of the CCCH zinc finger family identifies tissue specific and stress responsive candidates in chickpea (Cicer arietinum L.)

The CCCH zinc finger is a group of proteins characterised by a typical motif consisting of three cysteine residues and one histidine residue. These proteins have been reported to play important roles in regulation of plant growth, developmental processes and environmental responses. In the present study, genome wide analysis of the CCCH zinc finger gene family was carried out in the available c...

متن کامل

Determination of Genetic diversity of cultivated chickpea (Cicer arietinum L.) using Medicago truncatula EST-SSRs

Expressed sequence tags simple sequence repeats (EST-SSRs) are important sources for investigation of genetic diversity and molecular marker development. Similar to genomic SSRs, the EST-SSRs are useful markers for many applications in genetics and plant breeding such as genetic diversity analysis, molecular mapping and cross-transferability across related species and genera. In spite of low po...

متن کامل

Draft genome sequence of Cicer reticulatum L., the wild progenitor of chickpea provides a resource for agronomic trait improvement

Cicer reticulatum L. is the wild progenitor of the fourth most important legume crop chickpea (C. arietinum L.). We assembled short-read sequences into 416 Mb draft genome of C. reticulatum and anchored 78% (327 Mb) of this assembly to eight linkage groups. Genome annotation predicted 25,680 protein-coding genes covering more than 90% of predicted gene space. The genome assembly shared a substa...

متن کامل

Draft Genome Sequence of Rhizobium pusense Strain NRCPB10T (LMG 25623T) Isolated from Rhizosphere Soil of Chickpeas (Cicer arietinum L.) Grown in India

Rhizobium pusense strain NRCPB10T was isolated from rhizosphere soil of chickpeas (Cicer arietinum L.). Based upon the draft genome sequence, the genome is 5.28 Mb and encodes 5,064 proteins.

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره 7  شماره 

صفحات  -

تاریخ انتشار 2016